Can IBM Blue Gene/L compete with the Earth Simulator as a Climate Computer?

Richard Loft

National Center for Atmospheric Research

Boulder, CO USA

Short Answer: Yes

- Estimated sustained performance on T1279L96 (AFES) with 2-d decomposition is ~38 Tflops (vs 28)
- Latency/ efficiency of Legendre transforms are critical parameters.
- Naming Derby: IBM Blue-Planet?

Model of Spectral Dynamics Algorithm

- Consider FFT and LT in Spectral Dynamics and related transposes only.
- Assume seven 3-d fields to transform 3-d primitive equation model.
- Assume parity property of Associated Legendre Polynomials is used to cut LT operation count in half.

BG/L Performance ModelAssumptions

- Torus bandwidth = 180 MB/sec
- Torus latency = 5 usec
- FFT efficiency = 30%
- Legendre Transform = 70%

Performance Model Characteristics

- AFES Grid = 3480 x 1920 x 96 (T=1279)
- Nlyr ~ 7*Nlev + 1
- FFT Flops = 2*Nlat*Nlyr*5*(Nlon/2)*LOG2(Nlon))
- LT Flops = 8*Nlyr*(Nlat/2)*((T+1)*(T+2)/2)
- Assume 3 transposes x-y-x in each direction.

X Direction Transpose

Physics-FFT

Y Direction Transpose

FFT-Legendre

X Direction Transpose

Legendre-Spectral

BGL Climate Performance

Estimated BG/L Performance: T1279L96

Sanity Checks

- ~ 2years/day at 10 km (=useful rate)
- Memory: 3000 3-d fields at 64 kpes.
- I/O ~2Tbytes/day. 23 MB/sec 7x24.
- Brute force method @ high res.
- Explicit AMR may be more efficient.

